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Understanding the microscopic structure and macroscopic properties of condensed
matter from a molecular perspective is important for both traditional and modern
chemical engineering. A cornerstone of such understanding is provided by statistical
mechanics, which bridges the gap between molecular events and the structural and
physiochemical properties of macro- and mesoscopic systems. With ever-increasing
computer power, molecular simulations and ab initio quantum mechanics are promising
to provide a nearly exact route to accomplishing the full potential of statistical mechanics.
However, in light of their versatility for solving problems involving multiple length and
timescales that are yet unreachable by direct simulations, phenomenological and semiem-
pirical methods remain relevant for chemical engineering applications in the foreseeable
future. Classical density functional theory offers a compromise: on the one hand, it is able
to retain the theoretical rigor of statistical mechanics and, on the other hand, similar to
a phenomenological method, it demands only modest computational cost for modeling the
properties of uniform and inhomogeneous systems. Recent advances are summarized of
classical density functional theory with emphasis on applications to quantitative modeling
of the phase and interfacial behavior of condensed fluids and soft materials, including
colloids, polymer solutions, nanocomposites, liquid crystals, and biological systems.
Attention is also given to some potential applications of density functional theory to
material fabrications and biomolecular engineering. © 2005 American Institute of Chemical
Engineers AIChE J, 52: 1169–1193, 2006
Keywords: statistical mechanics, complex fluids, thermodynamics/statistical, surface
chemistry/physics

Introduction

The goal of statistical mechanics is to interpret and predict
the properties of macroscopic systems on the basis of their
microscopic constituents.1,2 It provides the bedrock for under-
standing numerous natural phenomena and for design and
optimization of chemical processes. The importance of statis-
tical mechanics in chemical engineering has been recognized
for many years.3-5 One prominent example, primarily from the

1960s and 1970s, is the development and application of equa-
tions of state and local-composition models, attained by inge-
nious combinations of basic concepts from statistical mechan-
ics (in particular, van der Waals equation of state and
Boltzmann’s distribution law) with extensive experimental da-
ta.6,7 These semiempirical methods have been widely used in
phase- and chemical-equilibrium calculations that are essential
in chemical engineering practice. Another well-known exam-
ple constitutes the applications of statistical-mechanical models
to gas adsorption and hydrate formation.8,9

Although the van der Waals equation of state and Boltz-
mann’s distribution law have played a pivotal role in many
classical molecular-thermodynamic models, in recent years, a
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number of more sophisticated statistical-mechanical methods
have also been used, driven by diverse special applications
related to fluid-phase equilibria, polymeric materials, colloids,
and interfacial engineering. These more rigorous theoretical
methods are based on molecular simulations,10,11 liquid-state
theories,12,13 polymer self-consistent field theory,14-16 and clas-
sical density functional theory.17,18 For example, powerful
field-theoretical methods have been developed for predicting
the mesoscopic structures of polymeric systems;14 general
equations of state have been established for fluid-phase equi-
librium calculations involving virtually any system of practical
interest.19,20 With the rapid increase of computer power, mo-
lecular simulation and ab initio quantum mechanics promise to
offer a universal approach to the realization of the full potential
of statistical mechanics.21 However, simulation cannot replace
all analytical methods in the near future, not only because
significant progress has yet to be made for modeling multiple
time- and length-scale problems that cannot be described by
current simulation methods but, more important, interpretation
of simulation data, much like experimental results, often re-
quires analytical tools to attain a good understanding of the
underlying physics. Analytical methods are by and large much
more efficient than direct simulations for predicting the molec-
ular constituents of a system with “tailored” properties, a
reverse problem that is of much interest in practical applica-
tions including drug design, gene mutation, and materials syn-
thesis.

Classical density functional theory (DFT) provides a com-
promise between conventional semiempirical methods and mo-
lecular simulations.18,22-24 On the one hand, DFT is able to
retain the microscopic details of a macroscopic system at a
computational cost significantly lower than that used in simu-
lation methods. On the other hand, DFT is more rigorous than
conventional phenomenological theories. It is applicable to
both uniform and confined systems within a self-consistent
theoretical framework. Although the practical value of DFT for
modeling interfacial properties was recognized soon after the
methodology was first introduced to classical systems in
1976,25 its broader applications for studying equilibrium and
kinetics of phase transitions, self-assembly, properties of poly-
meric materials, thin films, and a variety of biological systems
emerged only recently. Meanwhile, much progress has been
made in recent years in the development of more efficient
numerical algorithms and in the formulation of more realistic
free-energy functionals to account for the thermodynamic non-
ideality attributed to various intermolecular forces.

The purpose of this article is to review, along with illustra-
tive examples, recent progress of classical DFT in modeling the
phase and interfacial properties of fluids and soft materials.
Following a brief introduction to the basic concepts and new
developments toward a unified free-energy functional reflect-
ing various components of intermolecular forces, the main text
is concerned with applications of DFT to (1) surface tension
and interfacial behavior, (2) adsorption of gas and materials
characterization, (3) wetting transitions, (4) solvation, (5)
freezing and melting transitions, (6) phase behavior of liquid
crystals, (7) properties of polymeric materials and composites,
and (8) molecular self-assembly. This article concludes with a
brief discussion of some possible future applications of DFT to
fabrication of novel materials, environmental protection, and
biomolecular engineering.

No attempt has been made to cover all aspects of classical
DFT in the recent literature. Therefore, significant publications
may have been omitted. The contents discussed here are illus-
trative rather than exhaustive. Topics of interest to chemical
engineers that are not discussed because of the page limitation
include transport in ion channels,26,27 properties of biomacro-
molecular molecules in a “crowded” environment,28 kinetics of
nucleation,29 and nonequilibrium phase transitions.30-32 A re-
view of these topics would show that DFT is useful not only for
solving equilibrium problems but also for modeling kinetics
and transport phenomena at the molecular level.

Classical Density Functional Theory (DFT)
Basic concepts

Classical DFT stems from a mathematical theorem stating
that in an open system specified by temperature T, total volume
V, and chemical potentials of all constituent molecules �i, the
underlying external potential for each chemical species, de-
noted by �i(R), is uniquely determined by the equilibrium
density profiles or by the spatial distribution of molecules
�i(R).33 A corollary of this theorem is that for a classical
system, the Helmholtz energy can be expressed as a unique
functional* of the density profiles of the constituent molecules,
independent of the external potential. This Helmholtz energy
functional, designated as F[�i(R)], is often referred to as the
intrinsic Helmholtz energy, meaning that it is an inherent
property of the system and is independent of the external
potential. The mathematical foundation of DFT, in the lan-
guage of quantum mechanics, was first established by Hohen-
berg and Kohn33 in a seminal article published in 1964 con-
cerning the ground-state properties of an electron gas. It was
later generalized to nonzero temperatures by Mermin.34 Indeed,
from a mathematical perspective, classical DFT closely resem-
bles electronic DFT (unfortunately both have the same acro-
nym) except that in the former case, the density functional
applies to the structure of atoms or coarse-grained elements of
a polymeric molecule, whereas the latter applies to electrons.
Fueled with a pragmatic computational scheme proposed by
Kohn and Sham,35 electronic DFT has evolved into a powerful
approach in computational chemistry.

Although in a classical sense, the position of an electron or
atom can be specified by a conventional three-dimensional
vector r, a vector of higher dimensionality is necessary to
describe the spatial configuration of a polyatomic molecule
with m atoms (see Figure 1). A molecular density profile �i(R)
is thus defined as the ensemble average of instantaneous mo-
lecular densities

�i�R� � ��
Ni

�(r1, r2, . . . , rmi)� (1)

where the multidimensional vector R � (r1, r2, . . . , rm) de-
notes the positions of all atomic particles; Ni stands for the
number of molecules of species i; and � represents a multidi-
mensional Dirac-delta function, which is infinite when m atoms

* A functional is a function whose input variable is also a function. For instance,
in a simple atomic fluid the Helmholtz energy functional F[�(r)] maps a density
function �(r) to a real number for the Helmholtz energy.
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of the polyatomic molecule are placed at R � (r1, r2, . . . , rmi
)

and zero otherwise. The angle brackets in Eq. 1 stand for the
ensemble average. Because the multidimensional vector R
defines not only the position but also the configuration or
spatial arrangement of a multiatomic molecule, the molecular
density profile �i(R) entails information on both the micro-
scopic structure and on the average configuration of molecules.

For convenience, the multidimensional molecular density
�i(R) is often expressed in terms of the atomic densities �i,j(r),
that is, the density profiles of the consisting atomic particles,

�i, j�r� �� dR��r � rj��i�R� (2)

where the subscript j stands for an atom and the subscript i for
a molecule. If concern is restricted to atomic fluids such as
argon, the molecular density is simply a function of a normal
three-dimensional vector standing for the position of an atom.
Even though, in a uniform atomic fluid, the spatial average of
the atomic density �(r) becomes identical to the bulk density
�av, the local density �(r) can be infinitely large when the atoms
are localized such as in an idealized crystalline solid. For
example, in a one-component hard-sphere system at the close-
packed limit, the average reduced density is �av�

3 � �2,
where � denotes the hard-sphere diameter. In this case, the hard
spheres are arranged onto a face-centered cubic lattice and the
local density is infinite at the lattice sites and zero otherwise.

The second law of thermodynamics requires that, for an open
system, the grand potential � must be minimized at equilib-
rium. The grand potential is also a functional of the molecular
density �i(R), defined as

���i�R�� � F��i�R�� � �
i

� dR�i�R���i�R� � �i� (3)

Minimization of the grand potential functional yields a varia-
tional equation

�F��i�R��/��i�R� � �i�R� � �i � 0 (4)

Given an expression for the intrinsic Helmholtz energy func-
tional F[�i(R)], Eq. 4 can be solved to obtain the equilibrium
density profiles. From these density profiles, both structural and
thermodynamic properties of the system can be calculated by
following the standard statistical–mechanical relations.2 The
detail formalism of DFT can be found in textbooks and previ-
ous reviews.17,18

DFT is useful not only for inhomogeneous systems that are
subject to an external field but also for uniform systems such as
conventional bulk vapor and liquid phases, and for anisotropic
fluids such as liquid crystals. Although the average local den-
sity of a uniform fluid is the same everywhere, near an arbitrary
tagged molecule the average local density is inhomogeneous.
Indeed, as shown in Figure 2, this local average density is
closely related to the structure of a fluid or to the radial
distribution function. It has been demonstrated that DFT can be
used to derive various liquid-state theories including the Orn-
stern–Zernike equation and its closures such as that using
hypernetted chain (HNC) theory.22

Landmarks of classical DFT

Apart from the aforementioned mathematical theorem, vari-
ational approaches were used in statistical mechanics long
before the advent of classical DFT. As early as 1893, van der
Waals developed a successful molecular theory for represent-
ing the structure and surface tension of a vapor–liquid inter-
face. Van der Waals’ theory is based on a gradient expansion
of the Helmholtz energy functional with respect to a conjec-
tured interfacial density profile36

F � � dr����r�� � 	 � dr�	��r��2 (5)

Figure 1. Definitions of the average molecular density �av,
average local atomic density �(r), and average
local molecular density �(R) in a system consist-
ing of N polyatomic molecules in volume V.
The instantaneous density of an atom i at position r is spec-
ified by a three-dimensional Dirac-� function �(r 
 ri). Sim-
ilarly, the instantaneous density of a molecule i with m atoms
is specified by a 3m-dimensional Dirac-� function �(R 
 Ri),
where R � (r1, r2, . . . , rm) is a 3m-dimensional vector. The
angle brackets stand for ensemble averages. As illustrated, a
Dirac-� function �(x 
 x0) is everywhere zero except that at
a specific position (x0), it is infinite. The Dirac-� function
satisfies the normalization condition � dx�(x 
 x0) � 1.
[Color figure can be viewed in the online issue, which is
available at www.interscience.wiley.com.]

Figure 2. DFT is applicable to both uniform and inhomo-
geneous systems.
Even in a uniform fluid such as liquid argon, the average local
density near an arbitrarily tagged molecule is inhomogeneous.
The ratio of the local density �(r) and the average density �av
defines a radial distribution function, an important quantity for
describing the microscopic structure. A similar concept can be
applied to polyatomic systems to define intra- and intermo-
lecular correlation functions.278,279 [Color figure can be
viewed in the online issue, which is available at www.
interscience.wiley.com.]
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where �(�) is the Helmholtz energy density of the correspond-
ing uniform fluid with a molecular number density �, and 	 is
a constant related to the Boltzmann constant kB and the direct
correlation function c(r, �� )** at an average density �� � (�L �
�V)/2 of the coexisting vapor and liquid phases

	 �
kBT

12 � drr2c�r, ��� (6)

Regrettably, van der Waals’ important work was not widely
recognized until it was reinvented first by Landau and Lifshitz
in 1935, to describe the boundary of two magnetic domains;
and later by Mitsui and Furuichi in 1953, for studying the
interface between two ferroelectric structures; and most nota-
bly by Cahn and Hilliard in 1958, to represent the structure and
surface tension of vapor–liquid as well as liquid–liquid inter-
faces.37 The later versions of van der Waals’ square-gradient
theory remain useful in many aspects of modern physics and
engineering applications, particularly for understanding the
interfacial properties of fluids.

Another prominent variational approach in statistical me-
chanics was introduced by Onsager in 1949 for modeling the
isotropic–nematic transition of lyotropic liquid crystals.†38 For
a system consisting of nonspherical rigid particles, the molec-
ular density profile �(R) can be expressed in terms of the center
of mass r and orientation angle 
 of liquid-crystal molecules,
that is, �(R) � �(r, 
). Based on the lowest-order expansion of
the Helmholtz energy functional in terms of the anisotropic
density profile, Onsager derived

F � � drd
��r, 
��ln ��r, 
� � 1�

�
kBT

2 � dr1d
1 � dr2d
2��r1, 
1���r2, 
2� f�r1 � r2, 
1, 
1�

(7)

where f � e
�u 
 1 is the Mayer function, � � 1/(kBT), and u
stands for the pair potential between the anisotropic molecules.
The first term on the right-hand side of Eq. 7 represents the
Helmholtz energy functional of noninteracting (ideal) rigid
particles, and the second term represents the contribution aris-
ing from the intermolecular interactions, obtained from the
virial expansion of the Helmholtz energy functional truncated
at the second-order level. Onsager’s theory forms a foundation
for later theoretical developments and remains popular for
understanding the structure and interfacial behavior of liquid
crystals.39 Conceptually, it is essentially the same as the virial
expansion for the equation of state of a nonideal gas.

The first application of DFT as a general methodology to

classical systems was introduced by Ebner, Saam, and Stroud
in 1976 for modeling the interfacial properties of a Lennard–
Jones (LJ) fluid.25 Similar to van der Waals’ square-gradient
theory, the intrinsic Helmholtz energy functional was derived
from a partial summation of the gradient expansion

F � � dr����r�� �
kBT

4 � dr1dr2c

��r1 � r2�; ������r1� � ��r2��
2 (8)

where c(r, �� ) stands for the direct correlation function of a
uniform bulk fluid with a density �� � [�(r1) � �(r2)]/2. It was
demonstrated that Eq. 8 provides a good description of the
vapor–liquid surface tensions and the interfacial density pro-
files of argon over a wide range of temperatures. Aside from its
theoretical implications, the most significant part of this work
is the prediction of a first-order prewetting transition of unsat-
urated argon gas at the surface of solid carbon dioxide. Al-
though a similar prewetting transition was independently pre-
dicted by Cahn following van der Waals’ square-gradient
theory,40 the novel phase behavior stood for more than a decade
without experimental support and provoked much heated con-
troversy. Experimental verification of the prewetting transition
was first reported about 15 years later by Rutledge and Taborek
for adsorption of helium on cesium at extremely low temper-
atures.41

Excess Helmholtz energy functional

Whereas the mathematical framework of DFT is formally
exact, a precise expression of the intrinsic Helmholtz energy as
a functional of the molecular density profiles is unknown for
most systems of practical interest.†† Formulation of the Helm-
holtz energy functional is a task essentially equivalent to enu-
meration of the statistical partition function for the particular
system under investigation. A viable approach, practiced in
classical thermodynamics for more than 100 years, is to divide
the Helmholtz energy into an ideal part and an excess part. The
ideal part represents the contribution of an ideal gas where all
nonbonded interactions are turned off; the excess part accounts
for interactions leading to the thermodynamic nonideality.

For an ideal-gas system that is free of nonbonded interac-
tions, the Helmholtz energy functional is known exactly:

Fid � �
i

kBT � dR�i�R��ln �i�R� � 1�

� �
i

� dR�i�R�Vi�R� (9)

where Vi(R) stands for the bond potential of a molecule i with
all its segments connected in a configuration R. Because of the
multidimensional integrals on the right-hand side of Eq. 9, it is
not simple by any means to evaluate the ideal Helmholtz
energy functional analytically. Nevertheless, it is in a closed
form and the thermodynamic properties of this ideal system can

** Mathematically, a direct correlation function is defined as a second functional
derivative of an excess Helmholtz energy functional with respect to density profiles.
As discussed later, the excess Helmholtz energy functional is the Helmholtz energy
functional of the system under consideration minus that of an ideal-gas system at the
same temperature and density profiles.

† Although the definitions of lyotropic and thermotropic liquid crystals vary from
text to text, in this article, the former refers to an athermal system, such as hard rods
or ellipsoids, and the latter is a system in which the thermodynamic properties depend
on both concentration and temperature. †† One notable exception is hard rods and hard-rod mixtures in one dimension.
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be easily calculated using a modern computer, even for systems
containing molecules of arbitrary topology. The bond potential
that appeared in Eq. 9 may include contributions resulting from
bond stretching, angle bending, and torsional terms.42

The excess part of the Helmholtz energy functional, desig-
nated as Fex, is unknown for most systems of practical interest.
However, it can be approximately formulated by following
rigorous mathematical analysis and, more important, by phys-
ical insights for the specific system under consideration. Be-
cause Fex arises from the nonbonded interactions between
atomic segments, we may make a variational ansatz that the
excess Helmholtz energy can be expressed as a functional
depending only on the atomic density profiles, that is,

Fex��i�R�� � Fex��i,1�r�, �i,2�r�, . . . , �i,mi�r�� (10)

Equation 10 is formally exact as long as Fex[�i,1(r), �i,2(r), . . . ,
�i,mi

(r)] includes the multibody correlations of atomic seg-
ments arising from bond connectivity. In other words,
Fex[�i,1(r), �i,2(r), . . . , �i,mi

(r)] should be different from that
for an atomic system (where all chemical bonds are removed)
even when they have the same density profiles. It is important
to notice that the bonding potential does not enter directly into
the formulation of Fex[�i,1(r), �i,2(r), . . . , �i,mi

(r)].
Because the nonbonded interatomic forces are convention-

ally expressed in terms of short-range repulsion, van der Waals
attraction, electrostatic forces, electron donor–acceptor inter-
actions, and so on, each component of the intermolecular
potential makes a distinct (but not necessarily independent)
contribution to Fex[�i,1(r), �i,2(r), . . . , �i,mi

(r)]. In principle,
one may derive a unified expression describing all components
of the intermolecular forces (bonded and nonbonded) from
quantum mechanics. In that case, an accurate expression for the
excess Helmholtz energy functional would allow us to develop
a unified DFT applicable to all molecular systems. Although
the same argument can be used for molecular simulations, the
advantages of DFT are clear: DFT focuses on the direct con-
nection between free energy and molecular structure (density
profiles) rather than on the overwhelming data generated by the
trajectories of all constituent particles in molecular simulation.
A microscopic state of a many-body system entails 6N degrees
of freedom (where N is the number of spherical particles in the
system), whereas the density of a spherical object is a simple
function that depends solely on the three-dimensional vector r.
Therefore use of DFT provides deeper insights into the under-
lying physics of natural phenomena and, more important, re-
duces the computational demands.

Elements of nonideality

Short-range Repulsion. In statistical mechanics, the short-
range repulsion between two atomic particles (atoms or coarse-
grained elements of a polymer) is often represented by the
hard-sphere model, which assumes that each particle has a
physical volume prohibiting an overlap with other particles.
This excluded-volume effect plays a central role in determining
the structure and thermodynamic properties of condensed ma-
terials. It has been long recognized that, with an analytical
theory for hard spheres, the thermodynamic nonideality arising
from other components of the intermolecular forces can be
included by perturbation expansions of the Helmholtz energy

functional with respect to either the density profile or the
intermolecular potential.43

The structure and thermodynamic properties of a bulk hard-
sphere fluid can be accurately described by various analytical
theories, that is, the scaled-particle theory,44 Percus–Yevick
equation,45 and Boublik–Mansoori–Carnahan–Starling–Leland
(BMCSL) equation of state.46,47 Over the past two decades,
numerous versions of DFT have been published for represent-
ing the structure and thermodynamic properties of inhomoge-
neous hard spheres (see Evans22 and Cuesta et al.48 for the
literature before 1992 and for the developments made over the
past decade, respectively). Among them, the fundamental mea-
sure theory (FMT), first proposed by Rosenfeld,49 bears a
number of special features. First, this geometry-based DFT is
built on firm physical and mathematical foundations rather than
on empirical approximations. Unlike alternative versions of
DFT for hard spheres that apply weighted density approxima-
tions, FMT does not require the bulk properties of hard spheres
as input; instead, it can be reduced to a theory of bulk fluids as
an output. Theoretically, FMT provides an exact dimensional
crossover, that is, it is equally applicable to bulk systems (3D),
hard spheres confined between surfaces (2D), in a cylindrical
pore (1D), and in a cavity (0D). It is a self-consistent theory
directly applicable to one component and polydisperse mix-
tures, fluid and solid phases, and systems consisting of non-
spherical particles including liquid crystals.50 From a practical
perspective, it performs well at all densities, particularly at high
densities where alternative methods are inappropriate.

A number of modifications of FMT have been proposed
since it was first published in 1989.48 Because the accuracy of
FMT is similar to that of the scaled-particle theory or Percus–
Yevick theory for bulk hard spheres,51 its numerical perfor-
mance can be further improved by using the quasi-exact
BMCSL equation of state for bulk hard-sphere fluids.52,53 Ac-
cording to this version of FMT, the excess Helmholtz energy
functional can be expressed in terms of four scalar and two
vector-weighted densities, as introduced by Rosenfeld,49

Fhs
ex � kBT � dr�
n0ln(1 � n3) �

n1n2 � nV1nV2

1 � n3

�
1

36� �n3ln(1 � n3) �
n3

2

(1 � n3)
2� (n2

3 � 3n2nV2nV2)

n3
3 	 (11)

where {n} stand for the weight functions that are related to the
geometry of a spherical particle, that is, the center of mass,
surface area, and volume. For a uniform fluid, the vector-
weighted densities disappear and Eq. 11 reduces to the excess
Helmholtz energy from the BMCSL equation of state. Al-
though the modified FMT preserves most advantages of the
original theory, it improves the numerical performance, partic-
ularly for highly asymmetric hard-sphere systems.

Van der Waals Attraction. In addition to short-range re-
pulsion, van der Waals’ attraction is another essential compo-
nent of nonbonded interatomic interactions. Most versions of
DFT take a mean-field approach to account for the contribution
of van der Waals forces to the excess Helmholtz energy func-
tional. Although results from the mean-field approximation
may capture some essential features arising from the attractive
forces, they are at most semiquantitative, as one may anticipate
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from the van der Waals equation of state. A first step toward an
improvement is by a quadratic density expansion of the excess
Helmholtz energy functional relative to that for a uniform
fluid:54

Fatt
ex � Fatt

ex ��i
0� � �

i

�i
att � dr�i�r�

�
kBT

2 �
i, j

�� drdr�cij
att��r � r����i�r��j�r�� (12)

where Fatt
ex (�i

0) is the attractive part of the excess Helmholtz
energy of the reference bulk fluid and �i

0 is the average density
of an atomic component i. This “semiquadratic” approach
requires the excess chemical potential �att

ex and the direct cor-
relation function cij

att(r) of a uniform atomic fluid as input. For
that purpose, the analytical correlation functions derived from
the first-order mean-spherical approximation (FMSA) are par-
ticularly useful.55-60 It has been demonstrated that, at least for
relatively simple models such as Lennard–Jones systems and
coarse-grained models of polymers, excellent agreement be-
tween theory and simulation results can be attained.61 Because
the analytical expressions of both the excess chemical poten-
tials and direct correlation functions are readily available from
FMSA, the numerical implementation and computational cost
of the quadratic approximation are very comparable to those
for a mean-field approach.

Weak Association. Another important component in a con-
ventional force field is the formation of chemical or hydrogen
bonds as in associating fluids. For fluid-phase equilibrium
calculations, the thermodynamic perturbation theory62,63 has
been successfully used to develop the statistical associating
fluid theory (SAFT), a generic equation of state for associating
fluids and also for polymers.64 By incorporation of basic con-
cepts from DFT, various extensions of SAFT have been ap-
plied to inhomogeneous associating fluids near a hard wall, in
slit pores, and at vapor–liquid or liquid–liquid interfaces.65-73 A
relatively simple version of the excess Helmholtz energy func-
tional was recently derived by introducing the scalar- and
vector-weighted densities of FMT into the SAFT equation of
state:

Fass
ex � kBT �

i, A

� drn0�i�ln Xi
� A� � Xi

� A�/2 � 1/2� (13)

where the subscript i stands for the atomic species i with the
association site A. The inhomogeneous factor �i is related to
Rosenfeld’s weighted densities by

�i � 1 � nV2,i � nV2,i/n2,i
2 (14)

and Xi
( A) is the local fraction of i not bonded at an associating

site A. It has been demonstrated that Eqs. 13 and 14 provide a
quantitative description of chemical bonding for inhomoge-
neous associating fluids including waterlike molecules.68

Electrostatics. For systems with Coulomb interactions, a
common DFT approach uses a quadratic density expansion of

the Helmholtz energy functional with respect to that of a bulk
fluid or a suitably chosen, position-dependent reference flu-
id.74-78 Similar to Eq. 12, the direct correlation functions in this
“semiquadratic” expansion are obtained from an integral-equa-
tion theory, mostly from the analytical solutions of the mean-
spherical approximation (MSA).79 Unlike various mean-field
theories derived from the Poisson–Boltzmann (PB) equation,
the quadratic approximation is often sufficient to capture a
number of counterintuitive electrostatic phenomena observed
in solutions containing multivalent ions such as charge inver-
sion of macroions and attraction between like charges.80,81 The
limitation of the PB equation arises from its neglect of the size
of small ions and the correlation of charge distributions.

Correlations Attributed to Chain Connectivity. Applica-
tion of classical DFT to polymeric systems was first discussed
by Chandler, McCoy, and Singer (CMS) in 1986.82 The past
few years have witnessed enormous growth in this area.83-88

Early versions of polymer DFT were heavily influenced by the
self-consistent field theory and by Landau expansions for the
selection of the reference system or for the formulation of the
free-energy functional. These influences remain evident in dif-
ferent versions of dynamic DFT.14,30 Most recent applications
of DFT, however, adopt segment-level intermolecular forces
following either the CMS theory or the generalized thermody-
namic perturbation theory.89 The former is based on a quadratic
density expansion of the Helmholtz energy functional with
respect to that for a system of ideal chains, much like the
methods used for simple or charged fluids.90-92 This approach
requires as input the direct correlation functions from the
polymer integral-equation theory (that is, PRISM93) and the
intramolecular correlation functions from a single-chain Monte
Carlo simulation. Similar to the hypernetted-chain approxima-
tion for simple fluids, CMS theory is unable to describe phase
transitions such as liquid–vapor coexistence. The generalized
thermodynamic perturbation theory was initially introduced by
Kierlik and Rosinburg,89 who built on earlier work by Wood-
ward.94,95 In this approach, the Helmholtz energy functional
includes an exact formalism for the ideal chains that retains the
details of bond connectivity and an excess part accounting for
the contributions from all nonbonded inter- and intramolecular
interactions. The excess Helmholtz energy functional is ex-
pressed in terms of a weighted-density approximation for short-
range forces and a first-order perturbation theory for chain
correlations.61,96,97 For systems containing only homopoly-
mers, the contribution of chain connectivity to the excess
Helmholtz energy functional is

Fch
ex � kBT �

i

� dr�1 � mi�n0,i�r��iln yii�n�r�� (15)

where yii stands for the contact value of the local cavity
correlation function‡ of a uniform atomic fluid and n repre-
sents the weighted densities as used in Eq. 11. Equation 15 can
be readily generalized for applications to block and hetero
copolymers.98-100 In comparison with more traditional ap-
proaches for representing the structures and thermodynamic
properties of polymeric systems, including the polymer integral

‡ A cavity correlation function is defined as y(r) � g(r)exp[�u(r)].
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equation theory and polymer self-consistent field theory, the
polymer DFT has the advantage of versatility for polymeric
systems with complex intermolecular interactions.

Research over the past three decades has generated numer-
ous versions of DFT but it is fair to say that at this stage, none
of them is universally applicable to arbitrary molecular sys-
tems. The wide diversity of different versions of classical DFT
reflects not only the variety and complexity of natural phenom-
ena induced by rich molecular architecture and nonbonded
interactions, but also the generality of the basic idea of DFT
and its applicability to a broad range of problems. For practical
applications, the selection of a particular version of DFT is
influenced by several factors, including not only by its numer-
ical performance in terms of both accuracy and computing
efficiency, but also by the underlying physical models, by the
problems of interest and, very often, by personal taste. The
approximate expressions for the excess Helmholtz energy func-
tional discussed here allow us to address quantitatively most
nonbonded interactions in a complex fluid. However, signifi-
cant efforts are still required for the development of more
accurate density functionals accounting for more realistic in-
termolecular forces. Although the mathematical framework of
DFT is exact, its successful application critically depends on
judicious choice of an appropriate Helmholtz energy functional
suitable for the system under investigation.

Surface Tension and Interfacial Properties

Interfacial properties of fluids are essential for industrial
operations involving thin liquid films, emulsions, foams, dis-
persions, adsorption-based separations, and heterogeneous
chemical reactions.101-104 Traditional phenomenological meth-
ods for modeling interfacial properties provide little insight
into the microscopic properties of an interface that exhibits
inhomogeneity within only a few molecular layers. Detection
of the microscopic structure at such a small-length scale defies
even the most powerful experimental tools presently available.
As a result, much recent progress toward understanding inter-
facial phenomena relies on molecular modeling.

As discussed earlier, the usefulness of DFT for modeling
interfacial properties has been long recognized. Once an inter-
facial density profile is derived from minimization of the grand
potential, the surface energy or interfacial tension can be cal-
culated from

� �
1

A �� � �
i

� drr � 	�(r)�i(r)� (16)

where A stands for surface area, � � � 
 �b is the deviation
of the grand potential from that corresponding to the bulk fluid,
and �i(r) is the external potential. Equation 16 can be used for
an interface between two coexisting phases (such as vapor–
liquid and liquid–liquid interfaces) as well as for that between
a fluid and a solid substrate. In the former case, there is no
external potential and in the latter case the external potential
corresponds to the interaction between a molecule and the
substrate. Although the interfacial tension calculated from Eq.
16 can be directly tested with experimental data, the density
profiles derived from DFT provide insights into the microscopic
structure of the interface not available from experiments.

Because DFT is applicable to both bulk and interfacial
systems, it offers a self-consistent approach to describe bulk
and interfacial properties using a single molecular framework.
Such self-consistency is highly valuable at least from a prac-
tical perspective because, although bulk properties, including
the phase diagram, are often readily accessible by simple
experiment, measurement of interfacial properties is often a
much more difficult task.

Vapor–liquid interface

With proper boundary conditions for the coexisting bulk
phases, even relatively simple expressions for the Helmholtz
energy functional, including van der Waals’ original work or
those based on the local density approximations (LDAs) or
mean-field approximations, are often sufficient to describe
semiquantitatively the vapor–liquid interfacial tensions. How-
ever, a more sophisticated version of DFT is required to rep-
resent the bulk and interfacial properties within a self-consis-
tent theoretical framework. To illustrate, Figure 3 presents the
vapor–liquid coexistence curves, vapor pressures, surface ten-
sions, and interfacial density profiles of four common solvents
calculated from DFT.105 In these calculations, the Helmholtz
energy functional contains an ideal-gas term, the modified
fundamental measure theory for short-range repulsion, a qua-
dratic approximation for van der Waals attractions (Eq. 12),
and the thermodynamic perturbation theory for association and
chain correlation. The good agreement between theory and
experiments near the critical point of the bulk phase diagram is

Figure 3. Vapor–liquid coexistence curves (A), satura-
tion pressures (B), and surface tensions (C) for
four common fluids from experiment (symbols)
and from DFT (lines).105

In (A) and (B), the dashed lines show theoretical results
without corrections from the renormalization-group (RG) the-
ory for the long-range correlations near the critical point. (D)
shows the density profiles at the vapor–liquid interface of
methanol.
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achieved by application of the renormalization group theory.106

Despite some discrepancy between theory and experiment for
the densities of liquid water and methanol resulting from the
simplicity of the molecular model, DFT is able to correlate the
bulk and interfacial properties at all temperatures in a self-
consistent manner. The theoretical description of surface prop-
erties is much more demanding than that for bulk properties
because it is necessary to consider the spatial inhomogeneity.
For this reason, conventional phenomenological models often
require additional interface-specific parameters.

A similar DFT can be used to predict the vapor–liquid
interfacial properties of polymeric,107,108 ionic,109-111 and sur-
factant systems.112 For example, Figure 4 shows the tempera-
ture dependency of the surface tension of polydimethylsiloxane
(PDMS) calculated from a generalized first-order perturbation
theory.107 Agreement of the theory with experiment is excellent
for both monodisperse polymers as well as for blends over a
wide range of temperature. Although similar performance
might be achieved based on a conventional phenomenological
theory such as the square-gradient theory,113 in contrast to
DFT, a phenomenological model requires an analytic equation
of state for bulk fluids and a few parameters to account for
interfacial inhomogeneity. Moreover, the square-gradient the-
ory is unable to capture the nonmonotonic density profiles
across the vapor–liquid interface near the triple point or the
surface segregation effects arising from branching, segment
size, and isotopic substitutions.

As observed in experiments, DFT predicts that, at a given
temperature, the vapor–liquid surface tension of a polymeric
fluid declines with the chain length or the polymer molecular
weight (Figure 5). Numerical results from DFT also suggest
that at the vapor–liquid interface of a mixture containing deu-
terated and protonated polymers of the same length, the deu-
terated component always partitions preferentially to the inter-
face, but when the protonated chains are much shorter than
those of the deuterated chains, the protonated chains are en-
riched at the interface. These predictions are in good agreement
with neutron reflectivity and second-ion mass spectrometry
experiments.107 In addition, DFT captures the accumulation of
branched chains at the vapor–liquid surface in a mixture of
linear and branched polymers with the same number of repeat-
ing units. For the effect of segment-size disparity on surface
segregation, DFT correctly predicts a strong surface enhance-
ment of the chains with the larger segment. The predictions of
DFT for the vapor–liquid interfacial tensions of ionic fluids and
ionic melts are also in good agreement with simulation and
experimental results.110

Liquid–liquid interface

Demixing of a liquid mixture may occur at both high and
low temperatures. For a binary liquid mixture consisting of
nonpolar molecules of similar size, demixing occurs only be-
low an upper critical solution temperature (UCST). However,
the situation is much more complicated if the molecules of twoFigure 4. Surface tension of polydimethylsiloxane (PDMS)

from DFT (lines) and from experiment (symbols).
(A) The effect of temperature on surface tension for two
monodisperse fractions of PDMS with molecular weights
32,000 and 770 Daltons, respectively. (B) The surface tension
of a PDMS blend vs. the weight fraction of the low molecular
weight polymer. The experimental data are from Dee and
Sauer113 and the lines are calculated by Kierlik et al.107

Figure 5. (A) Reduced surface tension vs. the degree of
polymerization predicted by DFT;107 (B) sur-
face tension of PDMS vs. number-averaged
molecular weight Wn.
In (A) m is the number of repeating units in each molecule
represented by a tangent chain of Lennard–Jones (LJ) spheres,
� and � are the LJ parameters, and T* � kBT/�.
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liquids exhibit large size disparity (such as polymer solutions)
or form hydrogen bonds. In that case, the mixture may become
immiscible at both low and high temperatures, giving either
closed-loop–type or hourglass-type phase diagrams.

DFT has been used to examine the liquid–liquid interfacial
behavior of nonpolar,114 hydrogen-bonding,115,116 and polymer
liquid mixtures.108,117 In general, a weighted-density approxi-
mation is required to reproduce the oscillatory density profiles
and a minimum overall density across a liquid–liquid interface.
For liquids exhibiting closed-loop immiscibility, it has been
shown that the interfacial tension exhibits a maximum at the
temperature corresponding to the widest immiscibility gap or
equivalently, when the compositions of the coexisting liquids
have minimum similarity.115 The immiscibility loop diminishes
either by increasing the association between different compo-
nents or by reducing the overall density. DFT also predicts
demixing of two polymers induced by a difference in chain
length and segment diameter.108,118 The size-induced demixing
phase transition is most likely to occur at high pressures. Upon
approaching the critical point, the numerical results from DFT
indicate that the interfacial tension vanishes as the cube of the
density difference between the coexisting phases (as implied by
a typical mean-field argument).

For a polymer in a good solvent, the effective interaction
between the centers of mass of two polymer chains can be
approximately represented by a spherically symmetric Gauss-
ian model.119 Within this drastically simplified framework, it
has been shown that, by using a mean-field expression of the
Helmholtz energy functional (random-phase approximation),
the density profiles across the coexisting homopolymer/star-
polymer mixtures may exhibit pronounced oscillations on both
sides of the interface.120 It was also demonstrated that the
crossover from monotonic to damped oscillatory decay in the
free interface density profile is determined by the Fisher–
Widom line, that is, the line in the bulk phase diagram at which
the asymptotic decay of the radial distribution functions crosses
over from monotonic to damped oscillatory.121

Isotropic–nematic interface

The structure of a planar interface between coexisting
nematic and isotropic phases of a liquid crystal is distinguished
from that between two isotropic fluids as a result of the exis-
tence of long-range orientational ordering. In this case, the
surface energy or interfacial tension may vary with the direc-
tion of molecular ordering. Onsager’s theory represents a sim-
ple version of DFT for anisotropic fluids and liquid crystals. At
the nematic–isotropic interface, the normal pressure is constant
and equal to 
�/V (negative of the grand potential density) in
both bulk phases at coexistence. However, the transverse pres-
sure PT is anisotropic and varies with the interfacial density
profile. According to Onsager’s theory, PT is given by

PT� z�/kBT � �� z� �
1

2 � dr12 � d
1 � d
2f�r12, 
1, 
2�

��
0

1

d���z � �z12, 
1��� z � �1 � ��z12, 
2� (17)

where r12 � r1 
 r2 is the vector connecting the positions of
two molecules at r1 and r2, and z is the perpendicular distance
from the interface, z12 � z2 
 z1, and � is a coupling parameter.

Figure 6 shows the prediction of Onsager’s theory for the
difference between normal and transverse pressures in a hard-
ellipsoid model of liquid crystals. When the liquid-crystal
director in the nematic phase is parallel to the interface, there
is a large tension on the nematic side of the interface and a
small compressive region on the isotropic side. By contrast, for
perpendicular alignment, the tension is on the isotropic side.122

The variations of the transverse pressure, interface tensions,
and density profiles with the liquid-crystal director predicted by
Onsager’s theory are in good agreement with Monte Carlo
simulations.

Effect of surfactants

A conventional approach for interpreting the effect of sur-
factants on interfacial properties is by measuring the interfacial
tension as a function of bulk concentration. The equilibrium
adsorption isotherm is then correlated with a phenomenological
equation that typically ignores the configuration of surfactant
molecules at the interface.123 By contrast, a theoretical ap-
proach based on DFT accounts for both the surface enrichment
and configuration of surfactant molecules at the interface.

A new DFT method for describing the effect of surfactants
on surface tension and adsorption isotherms has recently been
proposed by Stoyanov and coworkers.124 In this method, the
excess surface Helmholtz energy functional consists of a local
density approximation for the chain elastic energy of surfactant
molecules and the surface osmotic pressure124

Fex � � dz�Ksz
2� � �1 � 2��kBT�2/ 2vsolv� (18)

Figure 6. Difference between the normal and transverse
pressures across a nematic–isotropic inter-
face (dashed–dotted line) predicted by Onsag-
er’s theory.122

The liquid-crystal molecules are represented by hard ellip-
soids with aspect ratio A/B � 15, where A and B stand for the
symmetry axis and the transverse axis of the ellipsoid, respec-
tively. The solid curve applies when the liquid-crystal mole-
cules are aligned parallel to the interface, whereas the dashed
line applies when the liquid-crystal molecules are aligned
perpendicular to the interface. [Color figure can be viewed in
the online issue, which is available at www.interscience.
wiley.com.]
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where Ks is the elastic constant of the chain molecule, �
represents the local volume fraction of the surfactant, � is the
Flory parameter, and vsolv is the solvent molecular volume.
Based on Eq. 18, Stoyanov et al. showed that the surface
pressure, defined as the difference between the interfacial ten-
sions without and with surfactant molecules, � � �p 
 �,
follows the scaling relation124

�2/5 

2kBT

53/5 ln c (19)

where  � [(18/25)w2Ks(mv0)5]1/3 and w � (1 
 2�)kBT/vsolv;
m and v0 are the number of segments and the segment volume
of the surfactant molecule, respectively; and c is the surfactant
molar concentration. Figure 7A shows the surface pressure as
a function of the bulk surfactant concentration derived from
Eq. 19. The agreement of theory with experiment is truly
remarkable, bearing in mind the simplicity of the theoretical
model. Figure 7B shows the predicted surface area per surfac-
tant molecule as a function of surfactant concentration. The
theoretical predictions are again in good agreement with ex-
perimental data from small-angle neutron scattering (SANS)
and ellipsometry measurements.

Capillary waves

The vapor–liquid and liquid–liquid interfaces are presumed
planar in all the above discussions. However, in general, both
interfacial density profiles and surface tension depend not only

on the intermolecular forces but also on the capillary waves of
the interface. Using an effective interface Hamiltonian derived
from DFT and a Gaussian approximation for distortion of the
planar density profile, Mecke and Dietrich125 predicted that the
surface tension first declines with surface-wave vector q, at-
tains a minimum, and then grows as q2 for large q. In other
words, a negative correction must be applied to the surface
tension if the interface shows a large curvature. Because of the
reduction in surface tension, the interface deformation becomes
more likely at small-length scales. This prediction contradicts
results from a conventional capillary-wave model but has been
confirmed by experimental results from X-ray surface scatter-
ing.126 In most cases, the capillary wave has a more significant
influence on the density profiles than on the surface tension.

Gas Adsorption and Materials Characterization

Gas adsorption is a broad subject relevant to numerous
industrial applications ranging from natural gas recovery, fuel
storage, and CO2 sequestration to sensors for chemical warfare
agents and to the treatment of lung diseases.127 As proposed by
the IUPAC Commission on Colloid and Surface Chemistry, the
equilibrium behavior of gas adsorption at a solid substrate can
be classified into six basic types depending on the strength of
gas–substrate interactions and on the pore size. Figure 8 sche-
matically shows adsorption isotherms according to the IUPAC
classification.128 Type I is typical for gas adsorption in micro-
porous materials such as activated carbon and zeolites with
pore size � 2 nm. Types II and III correspond to adsorption in
macroporous or on nonporous materials with strong and weak
fluid–surface attractions, respectively. Types IV and V are
typical for mesoporous materials (with pore size between 2 and
50 nm) with strong and weak surface attractions; both exhibit
a hysteresis loop in adsorption and desorption. Type VI applies
to systems with strong surface–gas interactions and when the
temperature is near the triple point of the adsorbate.

Classical DFT provides a state-of-the-art technique for mod-
eling gas adsorption at the molecular level. It enables calcula-
tions not only of adsorption isotherms but also of the detailed
inhomogeneous density profiles of gas molecules and of sur-
face phase transitions.129,130 Unlike conventional semiempirical
theories such as Langmuir, Brunauer–Emmett–Teller (BET),
and Kelvin equations, and numerous variations and extensions

Figure 7. (A) A new scaling relation between the surface
pressure (�) and the bulk concentration of n-
dodecyl pentaoxyethylene glycol ether (C12E5)
at the air–water interface; (B) surface area per
C12E5 molecule vs. bulk concentration of the
surfactant from SANS/ellipsometry measure-
ments (points) and from DFT (lines) (repro-
duced from Stoyanov et al.124).
In (A) Y � �2/5 
 �0

2/5, where subscript “0” denotes an
arbitrary reference point, c stands for molar concentration
(M).

Figure 8. IUPAC classifications of gas adsorption iso-
therms.
Here P0 stands for the gas saturation pressure. [Color figure
can be viewed in the online issue, which is available at
www.interscience.wiley.com.]
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of these classical methods, DFT is able to describe quantita-
tively all six types of adsorption isotherm within a unified
framework. For example, Balbuena and Gubbins131 investi-
gated adsorption of an argon-like fluid in a graphite-like slit
pore using a nonlocal density functional theory (NLDFT).
Their model system consists of Lennard–Jones molecules ad-
sorbed in a single slit pore where the wall potential is specified
by Steele’s 10-4-3 potential

�s� z� � �w�2

5 ��w

z �
10

� ��w

z �
4

�
�w

4

3( z � 0.61)3� (20)

where the parameters �w, �w, and  are related to the properties
of the solid substrate. The excess Helmholtz energy functional
includes a hard-sphere term proposed by Tarazona132 and an
attractive term represented by the mean-field approximation

Fex���r�� � Fhs
ex���r�� �

1

2 �� dr1dr2uatt�r1 � r2���r1���r2�

(21)

Balbuena and Gubbins131 studied the variation of adsorption
behavior as a function of surface energy and pore width. They
found that NLDFT is able to reproduce all six types of adsorp-
tion isotherms according to the IUPAC classification. More
recently, Neimark and coworkers133 also demonstrated that, as
reproduced in Figure 9, DFT properly bridges the gap between
molecular simulations and phenomenological equations,
thereby providing a description of capillary condensation/evap-
oration at all length scales.

Application of DFT for gas adsorption is not limited to
nanostructured materials such as zeolites, MCM-41, or alu-
minophosphates where the microscopic structure can be deter-
mined by X-ray or neutron diffraction.134 In recent years, DFT

has also been used for characterization of amorphous materials
such as activated carbons, oxides, or silica gels where we lack
definite knowledge of the pore structure.135

The mean-field approximation for representing the van der
Waals attractions between gas molecules becomes inadequate
when the surfaces are weakly attractive. As an improvement, a
number of more sophisticated versions of DFT have been
proposed in the past few years.136-138 To illustrate, Figure 10
shows density profiles for a Lennard–Jones fluid near a hard
wall and in an attractive slit pore calculated from Monte Carlo
simulations and from two different versions of DFT.54 Al-
though the mean-field theory is excellent for adsorption in the
attractive slit pore, its performance near a hard wall is inferior
to that of a non-mean-field version that takes appropriate ac-
count of correlation effects.

In addition to adsorption and capillary condensation of sim-
ple fluids, DFT is useful for describing liquid–liquid demixing
under confinement. For simple binary mixtures of nonpolar
liquids in a slit-like pore, classical DFT predicts that, in gen-
eral, the confinement and the wall attraction depress the UCST
and the region of immiscibility.117 If the confining surface
preferentially attracts one component in the binary mixture, the
confinement leads to a shift of the coexistence curve toward the
phase that is rich in the preferred component.139 Similar cal-
culations have been reported for binary mixtures of associating
liquids that exhibit closed-loop immiscibility.116 For polymer
mixtures, a DFT calculation indicates that, when the confining
surface is attractive, confinement in slit-like pores leads to a
two-step demixing transition.140 The first step of demixing
occurs within a few layers adjacent to the attractive surface and
the second step occurs in the entire pore. The multistep demix-
ing transitions of confined Gaussian-core fluids are strikingly
similar to the condensation and layer transitions of associating
fluids and water in attractive micropores.141,142 The effects of
confinement on liquid–liquid separations revealed by DFT

Figure 9. DFT bridges scales from molecular simulations to classical thermodynamics for modeling gas adsorption.
(a) Pressures of capillary condensation and desorption of argon at 87.3 K in a cylindrical pore predicted by NLDFT, by gauge-cell Monte Carlo
simulation, and by phenomenological Derjaguin–Broekhoff–de Boer (DBdB) theory. (b) Relative saturation pressures for the adsorption
(ADS) and desorption (DES) of N2 at 77 K in MCM-41 and SBA-15 nanoporous materials predicted by DFT and by the Kelvin–Cohan
equation. The points are experimental data.133 [Color figure can be viewed in the online issue, which is available at www.interscience.wiley.com.]
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provide useful insights for applications in oil recovery, lubri-
cation, coating technology, and pollution control.139

Wetting Transitions

Wetting refers to the disappearance of the contact angle of
three coexisting phases, such as a liquid droplet setting on a
solid substrate surrounded by a saturated vapor phase. The
phenomenon is pertinent to the spreading of paint on a wall,
spraying of an insecticide on leaves, extrusion of textile fibers
from a liquid solution, lubrication of gears, aircraft deicing, and
crude oil recovery from porous sandstones. The literature on
wetting phenomena is vast; a number of excellent reviews have
been published on both experiment and theory.143,144 Below we
review only some salient features of wetting behavior in the
context of recent work based on DFT.

A simple fluid near a planar wall

Most theoretical work on wetting phenomena has been fo-
cused on a simple model system consisting of a vapor phase
(saturated or unsaturated) in direct contact with a smooth
planar solid. Because of the surface attraction, a thin layer of a
liquid-like film is formed at the solid substrate even when the
vapor phase is unsaturated. As shown in Figure 11, at a given
temperature the film thickness increases monotonically with
the vapor pressure and reaches a finite value below the wetting
temperature Tw, but diverges otherwise. Below Tw, a bulk
liquid partially wets the surface. In this case, the contact angle

is related to the vapor–liquid, vapor–solid, and liquid–solid
interfacial tensions according to Young’s equation. Above Tw,
the saturated liquid completely wets the surface and the contact
angle becomes zero. At certain conditions, a thin–thick film
transition may occur below the saturation pressure. This phe-
nomenon is known as prewetting. The prewetting transition has
its own critical point referred to as the surface critical temper-
ature TS

C. Above TS
C, there is no coexistence of the thin and

thick films. Depending on the strength of the surface-fluid
potential, the surface critical temperature can be either below
or above the bulk critical point.

In analogy to bulk phase transitions, a wetting transition can
be first or second order, depending on whether the film thick-
ness diverges discontinuously or continuously as the tempera-
ture increases.‡‡ In some special cases, the second-order wet-
ting transition may be preceded by a first-order, microscopic-
to-mesoscopic film transition known as pseudopartial
wetting145 or frustrated complete wetting.146 Figure 12 shows
three wetting scenarios. The boundary between first-order and
second-order wetting transitions is shown in terms of the sur-
face energy when the attraction between the substrate and fluid
is short range.

Prewetting transition was first predicted by Ebner and
Samm147 using a gradient expansion of the Helmholtz energy
functional and by Cahn40 using van der Waals’ square-gradient
theory. The adsorption isotherm shows a discontinuity at the
condition of a prewetting transition, where a thin liquid film
coexists with a thick liquid film at the same temperature and at
a pressure below the saturation. The density profiles of both the
thin and thick films satisfy the variational equation (Eq. 4) and
they yield the same grand potential. Similar prewetting transi-
tions were discovered later in the binary liquid mixture meth-
anol and cyclohexane in contact with the coexisting vapor
phase.148 Because of the drastic approximations used in the
early theories, the existence of the first-order prewetting tran-
sition resulted in controversy that stimulated a number of

‡‡ At the wetting transition, the liquid always coexists with a saturated vapor. By
contrast, prewetting occurs at a pressure below the saturation.

Figure 10. Density profiles of a Lennard–Jones fluid (A)
near a hard wall and (B) in an attractive slit
pore.
The points are results from Monte Carlo simulation; the
solid and dashed lines are predictions of DFT using the
direct correlation function and the mean-field approxima-
tion, respectively.54

Figure 11. Film thickness vs. vapor pressure at different
temperatures.
Here Tw � wetting temperature, TC � bulk critical temper-
ature, and TS

C � surface critical temperature. [Color figure
can be viewed in the online issue, which is available at
www.interscience.wiley.com.]
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simulation works.22 Quantitative agreement between DFT and
Monte Carlo simulations can be seen in recent theoretical
investigations of prewetting transitions.149

Cahn’s theory has been extended to ionic fluids150 and to
systems with long-range substrate–fluid interactions where
frustrated complete wetting may occur.151 Nakanishi and Fish-
er152 demonstrated that it is able to capture most features of
prewetting and wetting transitions if the surface attraction is
short range. Regrettably, Cahn’s theory is mostly qualitative; it
provides only an appropriate connection between surface be-
havior and molecular properties of the solid and the coexisting
fluid. With the advent of more sophisticated versions of clas-
sical DFT, the coarse-grained theory has gradually fallen out of
fashion. DFT is useful especially for investigating wetting
transitions of complex fluids including polymeric systems. In
addition to first-order and second-order wetting transitions and
prewetting, DFT is able to capture the dependency of wetting
behavior on the details of substrate–fluid interactions and the
sequential wetting behavior at some subtle conditions of the

long-range solid–fluid interactions.153-155 Figure 13 schemati-
cally shows a phase diagram of wetting transitions in terms of
the surface energy according to a simple mean-field approxi-
mation of the Helmholtz energy functional for a nonpolar fluid
in contact with an attractive solid.156,157 As observed in exper-
iments, second-order wetting is most likely when the fluid–
surface interaction is short range and only moderately attrac-
tive. In addition, DFT predicts complete wetting and
nonwetting zones at strongly and weakly attractive surfaces,
respectively.

Wetting of polymeric fluids

Qualitatively, the wetting behavior of a polymeric fluid
resembles that for atomic systems.158,159 Essentially the same
theories (such as Cahn’s theory or classical DFT) can be used
to describe prewetting and various forms of wetting transitions
in polymeric systems.144,160,161 For example, DFT has been
applied to predicting the wetting behavior of a polymer melt on
a surface tethered with polymer chains of the same kind.144

This system is relevant to dielectric coating, adhesion, lubri-
cation, and biocompatibility. As shown in Figure 14, the poly-
mer DFT predicts a first-order wetting of the polymer melt at
an attractive surface with low grafting densities, similar to that
on a bare surface. For neutral or weakly attractive surfaces,
however, the wetting transition is second order at intermediate
grafting densities and becomes first order again at high surface
grafting densities. The theory predicts a frustrated complete
wetting on a repulsive surface resembling that for a simple fluid
reported recently.162 These predictions have subsequently been
observed in experiments.163,164 In addition, Muller and Mac-
Dowell studied the influence of an oxide layer on the wetting
behavior of polystyrene on top of a silicon surface. This system
represents a frequently used experimental situation for studying

Figure 12. (A) For a solid in contact with a saturated
vapor (that is, at vapor–liquid coexistence), a
thin liquid film is formed at the solid surface
and its thickness diverges smoothly or dis-
continuously as the temperature approaches
the wetting point (Tw): (B) variation of the con-
tact angle � near the wetting temperature: (I,
II, and III stand for first-order, second-order,
and sequence of wetting transitions, respec-
tively); (C) when the fluid–solid interaction is
short range, the first-order and the second-
order wetting-transition lines join at the tri-
critical point (TCP) where the prewetting crit-
ical temperature (TCpw) terminates.
[Color figure can be viewed in the online issue, which is
available at www.interscience.wiley.com.]

Figure 13. Effect of surface-fluid potential on wetting
transitions predicted by DFT.156

In the drying zone, the contact angle is always nonzero,
whereas in the wetting zone, the liquid completely wets the
surface at all temperatures. Between the drying and wetting
zones, the wetting transition can be either first or second
order. [Color figure can be viewed in the online issue, which
is available at www.interscience.wiley.com.]

Figure 14. Wetting behavior of a polymer on a polymer-
tethered surface predicted by DFT.280

The solid lines denote first-order wetting transitions; the
horizontal line marks second-order wetting transitions; and
the broken curve denotes transitions between a microscopic
thin film and a mesoscopic thick film. The line giving
transitions between a thin and a thick film terminates at a
critical end point (CEP) and at a critical point (CP). The
second-order and first-order wetting transitions at high graft-
ing densities are separated by a tricritical point (TCP).
[Color figure can be viewed in the online issue, which is
available at www.interscience.wiley.com.]
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wetting and dewetting phenomena in polymeric systems. At the
silicon surface with a thin oxide coating layer, DFT predicts
that the surface free energy is everywhere positive relative to
that of the bare surface or when the surface is in direct contact
with the bulk liquid. In this case, the polymer partially wets the
surface. When the surface is coated with a thick layer of oxide,
on the other hand, a polymer film of finite thickness is stable,
corresponding to the state of frustrated complete wetting. Be-
low the frustrated complete wetting temperature, the meso-
scopic film ruptures into small droplets. Prediction of “nano-
dewetting” is in good agreement with experiment.165

Effect of curvature on wetting

DFT has also been applied to investigating the influence of
substrate curvature on wetting transitions.166-168 Unlike the
planar case, complete wetting does not occur on a spherical
particle where the thickness of the wetting layer grows only as
the logarithm of the particle radius.169 DFT predicts that at a
spherical substrate, the contact angle declines with curvature,
whereas the opposite holds for the wetting temperature.170

Solvation and Surface Forces

In the development of modern solution theories, one key
challenge is to understand the microscopic structure of solvent
molecules near a solute (that is, solvation) and the solvent-
mediated forces. There has been a vast literature concerning
solvation and solvation forces. The following discussion is
limited to a few cases relevant to recent applications of DFT to
colloidal systems.

Solvation at different length scales

The presence of a solute in a liquid solvent introduces a local
distribution of solvent molecules that is affected not only by
solute–solvent interactions but also by the size of the solute.
Although the effect of the solute–solvent interaction energy on
solvation is well documented, the size effect is much more
subtle, as first indicated by Stillinger more than 30 years ago.171

By separately considering the slow and fast-varying compo-
nents of the local inhomogeneity using respectively the van der
Waals’ square-gradient theory and Gaussian approximation (or
quadratic density expansion), Lum et al.172 demonstrated that
the solvation of small apolar groups in water is different from
that of large hydrophobic groups. In the former, hydrogen
bonding of water is hindered yet persists near the solute. In the
latter, hydrogen bonding is depleted, leading to drying of
extended apolar surfaces and to long-range hydrophobic attrac-
tion.

Accumulation of solvent molecules near a small solute, and
depletion of solvent molecules near a larger solute has also
been observed in simple fluids as represented by the hard-
sphere or Lennard–Jones (LJ) potential.54,173 Figure 15 shows
the distributions of LJ molecules in a stable liquid around an
isolated hard-sphere solute of different sizes.174 Even in the
absence of solute–solvent attractions, solvent molecules may
accumulate around a solute whose size is comparable to that of
the solvent. The oscillatory local density distribution resembles
the radial distribution function of the pure solvent (Figure 15).
In this case, the solvation force is short range and mainly
repulsive. With increasing solute size, however, the oscillatory

density profile rapidly fades away and a vapor-like layer is
developed near the solute surface. The thickness of the vapor-
like layer grows with solute size, leading to a long-range
attraction.175,176

With an appropriate formulation of the excess Helmholtz
energy functional, agreement between DFT and molecular sim-
ulation is nearly perfect.174 Results from DFT calculations also
suggest that the depletion-induced surface attraction is substan-
tially stronger than that expected from conventional Hamaker
or Lifshitz theories.175 In addition, DFT predicts that, in good
agreement with molecular simulations but contrary to the stan-
dard Hamaker theory, in a fluid medium the attraction between
two hard surfaces increases with temperature when the pressure
is fixed, but at a fixed temperature, it falls as the pressure
rises.175 Because the van der Waals attraction between solute
and solvent molecules is ubiquitous, even a weak solute–
solvent attraction may lead to a large reduction of the vapor-
like depletion layer. Nevertheless, the incipient presence of
drying should play an important role in hydrophobic phenom-
ena at large-length scales.172,177

Electric double layer

The solvation of a charged particle in an electrolyte solution
results in the accumulation of counterions and the depletion of
co-ions. The charged surface, along with the neutralizing coun-
terions, is called the electric double layer (EDL), which is of
central importance in surface chemistry and colloid science.
Although conventional wisdom suggests that the colloidal
charges are only partially screened by the surrounding counte-
rions, recent experiments and molecular simulations indicate
that the overall charge of a macro-ion plus that of its surround-
ing counterions may have a sign opposite to its bare
charge.178,179 In contradiction to classical Derjaguin–Landau–
Verwey–Overbeek (DLVO) theory, the electrostatic interaction
between similarly charged colloidal particles can be attractive

Figure 15. Density profiles �(r) of a Lennard–Jones (LJ)
fluid around an isolated hard sphere of differ-
ent sizes.54

Here �b is the bulk density of the LJ fluid and S stands for
the size ratio, that is, the diameter of the hard sphere divided
by �. The symbols are simulation data,281 and the solid and
dashed lines are predictions of DFT. For clarity, the density
profiles for S � 1, 2, and 3 have been shifted upward by 2.4,
1.6, and 0.8 units, respectively. [Color figure can be viewed
in the online issue, which is available at www.interscience.
wiley.com.]
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in the presence of multivalent counterions.180 These nonintui-
tive electrostatic phenomena arise from the correlation of
small-ion distributions and from the size effect that are ne-
glected in classical electrostatic theories.

Electrostatic interactions are important for a number of tech-
nological applications including fabrication of composite ma-
terials,181 intelligent sensors,182 and gene delivery.183 Figure 16
illustrates two complex structures formed by charge inversion
and subsequent attraction between similar charges. Each lipid
bilayer adsorbs an excess amount of oppositely charged DNA
molecules leading to the charge inversion, which allows the
assembly of additional lipid layers. In other words, two lipid
layers of the same charge exhibit strong attraction (as shown in
the well-organized layer-by-layer structure) in the presence of
oppositely charged DNA molecules. The attraction between
similar charges is also evident from the formation of DNA
toroid in the presence of multivalent counterions. Because the
DLVO theory ignores the molecular characteristics of small
ions, it is apparently insufficient to explain DNA condensation
or the formation of DNA–lipid complexes. A good understand-
ing of these mesoscopic structures would be helpful for con-
trolling the structure of assemblies of biomacromolecules for
medical applications including more efficient machinery for
gene delivery.

Charge inversion and attraction between similar charges can
be captured using relatively simple models of colloids where
both colloidal particles and salt ions are represented by spher-
ical charged particles and the solvent is a continuum dielectric
medium. Even though this primitive model is much oversim-
plified, it retains the essential physics of the nonintuitive elec-
trostatic phenomena that cannot be described by conventional
mean-field theories including the Poisson-Boltzmann (PB)
equation. A simplified model may provide useful insights into
often complicated realistic systems. By explicitly accounting
for the size effect and for the correlation of charge distributions
that are ignored by the PB equation, DFT is able to represent
both charge inversion and attraction between like charges.81,184

To illustrate, Figure 17 shows that, at sufficiently high surface-

charge density, the overall charge of a macro ion and its
surrounding counterions near the surface may become opposite
to the bare charge of the macroion. Results from DFT also
reveal that, in contrast to the predictions from the PB equation,
the zeta potential of a colloidal particle strongly depends on the
valence of counterions and may not vary monotonically with
the charge density. Recently, DFT has also been applied to
investigating the structural and thermodynamic properties of
multicomponent mixtures mimicking a crowded cellular envi-
ronment.74 In the context of a primitive model where macro-
molecules are represented by neutral or charged particles and
water by a continuous medium, it has been demonstrated that
DFT is able to quantitatively account for both the excluded-
volume effects and the long-range electrostatic interactions.

Polymer-mediated solvation forces

Dispersions of colloidal particles in polymeric systems have
been the focus of sustained experimental and theoretical efforts
stemming from their close relevance to colloidal stability and
composite materials. However, comprehensive understanding
of solvation and interactions between colloidal particles in
polymeric systems remains a theoretical challenge. Even at the
molecular level, such systems involve multiple length scales
arising from the solvent molecules, the polymer segments, the
entire polymer chain, and the colloidal particles. Subtle inter-
play of the particle size, the polymer chain length, the particle–
segment interactions, the polymer concentration, and the solu-
tion conditions makes the distribution of polymer chains
around each particle extremely intricate, thereby leading to
delicate colloidal forces and phase behavior. In particular, near
the critical point of the solvent phase transition or near the
thin–thick film transition at the surface of each colloidal par-
ticle, extremely attractive and long-range colloidal forces have
been identified.185-187

Classical DFT offers a generic approach for quantitative
description of solvation and colloidal forces in polymer solu-
tions and melts. In comparison to a number of conventional
theories, DFT has the advantage of taking into account the
multiple length scales associated with the polymer–colloid
systems within a theoretically consistent framework.188,189 DFT

Figure 16. Understanding nonintuitive electrostatic phe-
nomena such as charge inversion and attrac-
tion between similar charges could lead to
more efficient strategies for gene therapy.
(A) Lipid–DNA complex where the lipid molecules are
arranged in a lamellar stack of nearly flat bilayers, with the
DNA intercalated between each pair of bilayers.183 The
DNA molecules are represented by rods with the black lines
denoting a helical structure; the light and dark spheres
represent the head groups of the neutral and cationic lipid
molecules, respectively; and the hydrophobic layer consists
of lipid tails. (B) A micrograph of a �DNA toroid.282 [Color
figure can be viewed in the online issue, which is available
at www.interscience.wiley.com.]

Figure 17. Accumulated charge P(r) around an isolated
macroion in a 2:2 electrolyte solution at T �
300 K.81

The concentration of the electrolyte is 1.25 M and the
diameter of small ions � � 0.4 nm. The macroion has radius
1.0 nm and total charge 
20. r is the distance from the
center of the macroion. The symbols are MC data; the
dashed and solid curves represent results from the Poisson–
Boltzmann theory and DFT, respectively.81
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is applicable to dilute and semidilute polymer solutions as well
as to polymer melts, polymers of essentially arbitrary architec-
ture, and adsorbing or nonadsorbing polymers.190

The distribution of polymers near a colloidal particle and
polymer-mediated colloidal forces are significantly influenced
by the particle–polymer interaction energy and by the size
ratio.191 In the absence of strong particle–polymer attraction,
polymers in a good solvent are depleted from the surface of a
large particle on the length scale comparable to the polymer
radius of gyration. In this case, the colloidal force is predom-
inantly attractive, as predicted qualitatively by the Asakura–
Oosawa theory. The entropy-induced attractive potential in-
creases with polymer concentration. When the polymer
concentration is beyond a certain limit, however, the self-
exclusion of polymer segments diminishes the depletion zone
near the colloidal surface. Competition of surface depletion
with excluded-volume effects induces a repulsive barrier in the
solvation potential before the colloidal particles fall into deep
attraction near contact.192 Such repulsion could lead to resta-
bilization of a polymer-flocculated colloidal dispersion that
cannot be captured by Asakura–Oosawa theory.96

Upon addition of strong attraction between colloidal parti-
cles and polymer segments, the depletion layer disappears and
accumulation of polymer chains near the particle surface leads
to a colloidal repulsion. By contrast, more attraction between
polymer segments upon changing solvent quality or tempera-
ture leads to stronger surface depletion and consequent colloi-
dal aggregation. When the colloidal particle is significantly
smaller than the polymer radius of gyration, the distribution of
polymer segments near the particle surface is determined by the
segment–particle interactions and by the polymer intramolec-
ular correlations. For polymers in a good solvent, recent neu-
tron-scattering experiments suggest that the excluded-volume
effects between the polymer segments and the colloidal parti-
cles may cause the polymer chains to shrink or collapse sig-
nificantly.193 As revealed by Monte Carlo simulations,194,195 the
reduction of polymer size can be explained by polymer wrap-
ping around the colloidal particle. In this case, the potential of
mean force between colloidal particles is also attractive. How-
ever, this attraction is not introduced by the depletion of
polymer chains but probably arises from the excluded-volume
effect of polymer segments and the intrachain correlations. The
cause of attraction is reflected in the range of colloidal forces
that are normally much smaller than the polymer size. At a low
polymer concentration, the polymer-mediated potential is very
weak (�0.05kBT) but is relatively long-range. Beyond the
polymer overlap concentration, the segment-excluded volume
becomes more significant and the short-range attraction is
considerably enhanced.196 For small colloids dissolved in a
solution of nonadsorbing polymers, recent Monte Carlo simu-
lation also indicates the colloidal force may exhibit long-range
oscillation persisting over several multiples of the polymer
radius of gyration.197 Although a full capture of all the details
of polymer-mediated colloidal forces represents a significant
theoretical challenge, application of DFT to polymer–colloid
mixtures is certainly very promising.

It has been long recognized that attachment of highly soluble
polymers onto a colloid/solid surface offers an efficient means
to minimize often undesirable, nonspecific surface adsorption
in a solution and to stabilize colloidal particles.198,199 The
equilibrium properties and surface forces of tethered polymers

(brushes) have been subjected to extensive investigations by
experiments, simulations, and a number of theories, including
DFT.200-203 Recent interest has been shifted to studying the
effect of polymer architecture, especially branched, star, or
multiblock copolymers on surface protection.190 For example,
at fixed surface grafting density, highly branched hydrophilic
copolymers minimize protein adsorption more efficiently than
traditional linear polymers such as polyethylene glycol.204 As
shown in Figure 18, polymers with multiple anchoring sites
may introduce a cooperative effect in terms of both grafting
efficiency and solvation forces.100 Applications of DFT to more
complicated polymeric systems will help to narrow the gap
between fundamental research and practical applications of soft
matter.

Freezing and Melting Transitions

Classical DFT has been widely recognized as one of the
most efficient methods for theoretical study of freezing and
melting transitions in simple fluids as well as in colloidal
dispersions. Despite indisputable success, early application of
DFT in this field was for a while regarded as “utilitarian or a
chemical engineer’s prescription.”22 The main reason is a lack
of theoretical justifications for various early versions of
weighted density approximations (WDAs) that map the free-
energy functional of an anisotropic solid to that of a homoge-
nous fluid. The situation is quite different after the invention of
the fundamental measure theory, which has a firm theoretical
basis and is naturally applicable to fluids as well as to solids.205

Different from conventional equations of state that entail dif-
ferent models for coexisting phases, DFT directly expresses the
thermodynamic potentials of a system, fluid or solid only, in
terms only of one-body density profiles. DFT is able to de-
scribe freezing and melting transitions within a unified theo-
retical framework.

In DFT calculations, the anisotropic solid density is usually
specified a priori as a sum of the Gaussian distributions cen-
tered on the Bravais lattice sites of the solid phase

Figure 18. Surface force Fs between two parallel plates
mediated by copolymers with multiple an-
choring sites.100

Here � stands for segment size, H* � H/� is the reduced
surface separation, �* � �/kBT is the reduced surface en-
ergy, A is the surface area, and �b is the bulk volume
fraction of the polymer. The copolymer consists of blocks of
20 nonsticky segments for each surface anchoring site.
[Color figure can be viewed in the online issue, which is
available at www.interscience.wiley.com.]
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where the inverse width of the Gaussian parameter  provides
a measure of the density localization in the crystal and {Li}
represnts the real-space lattice vectors. With different methods
for the paramerization of the solid density, DFT has been
successfully applied to representing fluid–solid and solid–solid
transitions in hard spheres,206-209 simple liquids,210,211 anisotro-
pic fluids,212-214 and various models of colloidal dispersions.215-

221 DFT is useful not only for freezing/melting transitions of
one-component systems but also for mixtures where exotic
fluid–solid and solid–solid transitions have been identi-
fied.222-224 Application of DFT to a fluid–solid interface (with
explicit consideration of solid inhomogeneity) is able to cap-
ture the partially periodic microscopic structure and the orien-
tation variation of the interfacial tension.225,226 More recently,
DFT has been used to explore structure formation in colloids
under an external field.227-229 The periodic potential-induced
freezing and reentrant melting of colloidal particles at a surface
predicted by DFT are all in good agreement with experi-
ment.230,231

Phase Behavior of Liquid Crystals

Liquid crystals are characterized by orientational anisotropy
on a macroscopic scale arising from partial ordering of non-
spherical molecules. The equilibrium density profile in a liquid
crystal depends on both the distribution of the center of mass
and the orientation of constituent molecules. The system is in
an isotropic state if the density is independent of both position
and orientation. As shown in Figure 19, a nematic state is
obtained if the density depends on orientation but not on
position; a smectic state is obtained if the density is ordered in
both position and orientation. Other liquid-crystal states are
also possible in confined systems or in those consisting of more
complicated liquid-crystal molecules.

Lyotropic liquid crystals

Because the thermodynamic functions of a liquid crystal
phase can be naturally expressed in terms of the angle-depen-

dent density profiles, the usefulness of DFT for predicting the
phase behavior of liquid crystals has long been recognized. As
discussed earlier, Onsager’s theory for the isotropic–nematic
phase transition in hard rods is based on the second-virial
expansion of the excess Helmholtz energy functional.38,232,233 It
is exact for infinitely long hard rods but becomes inadequate
for systems containing molecules with a small aspect ratio and
for those phase transitions that include various smectic phases.
The Parson–Lee functional provides an improvement of On-
sager’s theory by taking into account the excluded-volume
effect using an effective hard-sphere model.233-236 Likewise,
the Maier–Saupe theory and its extensions to include intermo-
lecular attractions can be understood as an extension of van der
Waals mean-field theory for uniform fluids to systems with
orientation-dependent intermolecular attractions.237

Classical theories of liquid crystals are useful for describing
isotropic-to-nematic transitions but are often insufficient to
represent those phase transitions that concern both original and
positional ordering as encountered various smectic phases.
Toward that end, several versions of DFT have been proposed
recently.238,239 Using a nonlocal density functional for the free
energy of effective hard spheres in the Parson–Lee model,
Somoza and Tarazona240 predicted first- and second-order
phase transitions among nematic, smectic-A, and smectic-C
phases in hard spherocylinders. Figure 19 schematically shows
the phase behavior of hard cylinders. It has been demonstrated
that the Somoza–Tarazona theory is also applicable to inho-
mogeneous spherocylinders and their mixtures.241-244 Applica-
tion of Rosenfeld’s fundamental measure theory to binary
hard-platelet fluids reveals that the bulk phase diagram includes
an isotropic phase, one or two nematic phases of different
composition, and a columnar phase.245

Gay–Berne model

Liquid crystals are often divided into two basic classifica-
tions: thermotropic and lyotropic. The phase transitions of
lyotropic liquid crystals mainly depend on concentration,
whereas those of thermotropic liquid crystals depend on both
temperature and concentration. Whereas hard spherocylinders
and platelets provide a good representation of lyotropic liquid
crystals, they are not useful for thermotropic liquid crystals
because the attractions between these particles are not in-
cluded. Much theoretical work on the phase transitions of
thermotropic liquid crystals is based on the Gay–Berne mod-
el.246-248 The interaction potential between two axially asym-
metric molecules is

u�r, 
1, 
2� � 4��r̂, 
1, 
2� � �� �0

r � �(r̂, 
1, 
2) � �0
�12

� � �0

r � �(r, 
1, 
2) � �0
�6	 (23)

Equation 23 can be understood as an extension of the Lennard–
Jones potential. The vector r � r2 
 r1 separates the centers of
mass of two molecules with orientations 
1 and 
2; r̂ � r/� r �
is a unit vector, and �(r̂, 
1, 
2) and �(r̂, 
1, 
2) are angle-
dependent energy and length functions, respectively.247 Be-
cause the Gay–Berne potential includes anisotropic repulsive
and attractive components, it provides a benchmark model for

Figure 19. Phase diagram for a system containing hard
cylinders according to DFT.240

Cylinder shown on the righthand side defines the diameter D
and length L of a liquid-crystal molecule. Inserts show
alignment of liquid-crystal molecules. [Color figure can be
viewed in the online issue, which is available at www.
interscience.wiley.com.]
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thermotropic liquid crystals that form a large variety of par-
tially ordered phases.

As schematically shown in Figure 20, a simple version of
DFT, derived from the virial expansion of the excess Helm-
holtz energy functional, is capable of describing uniform iso-
tropic vapor and liquid phases, nematic phases, and layered
smectic phases of the Gay–Berne model within a single theo-
retical framework.246 The phase diagram includes isotropic-to-
nematic and nematic-to-columnar phase transitions when the
aspect ratio is small and the nematic phase disappears beyond
a critical aspect ratio.247 Although the transitions among vapor,
isotropic liquid, and crystalline solid resemble those corre-
sponding to simple fluids, several ordered structures appear
between isotropic liquid and solid phases. In addition to
nematic and smectic phases, the phase diagram of the Gay–
Berne model includes a columnar phase where disk-like mol-
ecules assemble into columns with a two-dimensional spatial
periodicity.

The numerical details for the application of DFT to liquid
crystals are necessarily more complicated than those for simple
fluids because of the higher dimensional integrations. Fortu-
nately, the computational cost becomes of less concern com-
pared to that of Onsager’s era when a numerical solution could
be obtained only by polynomial expansions. Whereas bulk
phase behavior of liquid crystals has been the major focus of
most DFT calculations reported in the literature, DFT is
equally applicable to phase transitions of liquid crystals at
inhomogeneous conditions.249 More reports for such conditions
are expected in the near future.250,251

Structured Soft Materials and Composites

Synthesis of materials with precisely controlled microstruc-
ture has been a hallmark of modern materials science. An
outstanding example is the use of block copolymers that have
been tailored for applications ranging from the exotic to such
everyday materials as removable adhesive pads and the soles of
running shoes. Unlike conventional crystalline materials that
exhibit order at the atomic or molecular levels, structure or-
dering in block copolymer systems is mostly induced by mi-
croscopic phase segregation of chemically distinct segments
that are covalently linked together. Such microscopic phase
separations have been successfully described by the polymer
self-consistent field theory.252

Classical DFT shares a number of similarities with the
polymer self-consistent field theory except that, as in molecular
simulations, DFT follows the chemical topology of polymeric
molecules and specific intermolecular interactions. DFT is able
not only to reproduce the morphologies of block copolymer
thin films predicted by self-consistent field calculations but also
to resolve the segmental detailed packing structures near the
interface.253,254 In addition to segmental/level details, DFT has
the advantage of explicitly accounting for the compressibility
and local segmental packing effects that are missed in a typical
self-consistent field theory.

In recent years, block copolymers have been used as useful
templates for fabrication of nanostructured materials.255-257

Nanoparticle–copolymer hybrids combine the unique mag-
netic, electronic, catalytic, and spectroscopic features of semi-
conductor or metallic colloids with the flexibility, solubility,
and processibility of polymers, promising for development of
the next-generation catalysts, membranes, and optoelectrical
devices. Controlled synthesis of such materials for tailored
applications requires good understanding of how copolymer
chemical structures, molecular weight, and composition, and
the characteristics of nanoparticles influence microscopic mor-
phology and phase behavior. Toward that end, the self-consis-
tent field theory has been extended to polymer and nanoparticle
mixtures by including DFT to account for the excluded-volume
effect of nanoparticles.258,259 According to the hybrid theory,
the total Helmholtz energy functional for a system containing
AB block copolymers and neutral nanoparticles is given by

F �
N

2V � dr �
i�j

�i�r��j�r��ij �
1

V � dr �
i

�i�r�wi�r�

� �1 � �P�ln�V�1 � �P�/Qd� � �P/ ln�V�P/QP�

� 1/V � dr�P�r��hs��� P�r�� (24)

where N is the degree of polymerization of the block copoly-
mer, V is the total volume, �i(r) represents a local volume
fraction with subscript i denoting a segment A or B or a
nanoparticle. The first two terms on the right-hand side of Eq.
24 account for the two-body mean-field attractive energy and
the free energy arising from the self-consistent field, respec-
tively; the next two terms stand for the free energy of a single
copolymer molecule (d) and a nanoparticle (P), respectively,
where Q stands for the single-molecule (particle) partition
function. The parameter  denotes the particle-to-diblock vol-
ume ratio. Finally, the last term in Eq. 24 comes from the
excluded-volume effect of nanoparticles, represented by the
DFT of Tarazona.132 This hybrid theory is able to capture a rich
variety of mesostructures in particle–block copolymer mix-
tures, thereby enabling the fabrication of novel composite
architectures by design.260 Compared to molecular simulations,
the hybrid DFT approach bears important advantages of nu-
merical efficiency because of its simplicity. It provides useful
insights for controlling the structures of block–copolymer–
particle composites. Although application of the local incom-
pressibility condition to a continuous model is questionable,
this drawback can be overcome by taking into account the

Figure 20. Liquid crystals in the Gay–Berne model pre-
dicted by DFT.
[Color figure can be viewed in the online issue, which is
available at www.interscience.wiley.com.]
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characteristics of both nanoparticles and block copolymers
within a truly self-consistent DFT.

Molecular Self-Assembly

Amphiphilic molecules (such as surfactants) may self-orga-
nize into a variety of intriguing ordered structures in a solution.
The self-assembly processes have been of prime scientific
interest for decades. Applications include formation of vesicles
or liposomes as carriers of therapeutic agents and as simplified
models for biological membranes.204

Early research in the self-assembly of amphiphilic molecules
has been heavily influenced by a phenomenological theory first
proposed by Tanford for the formation of spherical micelles.261

This seminal work was later extended by Nagarajan and Ruck-
enstein,262 Israelachvili,263 Blankschtein,264 and others to more
sophisticated models of self-assembly for representing the for-
mations of micelles, bilayers, vesicles, and microemulsions.
These phenomenological theories have proved useful as rules
of thumb for experimental design of many amphiphilic systems
including those containing lipid molecules and block copoly-
mers.

Classical DFT has also been used to study structure ordering
in amphiphilic systems for a number of years.265-270 The basic
idea is that the organized microscopic structures satisfy a local
minimum of the grand potential energy, which can be de-
scribed in terms of the density-functional formulism. Based on
coarse-grained models of amphiphilic molecules, DFT is able
to represent not only the conditions required for micellization
but also the microscopic structures of spherical micelles, ves-
icles, and bilayer membranes made of either one-component or
multicomponent amphiphiles. In addition, DFT has also been
used to study the organization of amphiphilic molecules at
liquid–vapor and liquid–solid interfaces. Whereas early appli-
cations of DFT emphasized the qualitative “global” phase
diagram of amphiphilic systems and the microscopic origin of
membrane elastic constants, DFT is also applicable to more
realistic models of amphiphiles including mixed ionic surfac-

tants and lipid bilayers.271,272 To illustrate, Figure 21 shows a
phase diagram for a coarse-grained model of lipid solutions
predicted by DFT.272 The curves denote various coexistence
lines among lipid-rich and solvent-rich macrophases, and bi-
layers and lamellar microphases. Although only planar sym-
metry is considered, the DFT captures compressibility and
packing effects of flexible lipid molecules in a solvent and is
naturally applicable to both micro- and macrophases.

Summary and Outlook

As a generic method in statistical mechanics, classical den-
sity functional theory (DFT) offers a powerful alternative to a
variety of conventional theoretical methods and molecular sim-
ulations for linking microscopic properties of chemical systems
to the structural and thermodynamic properties. The practical
value of DFT is reflected not only by its generality but also by
its versatility for solving problems that may not be attained by
conventional theories. This review gives some specific exam-
ples where DFT is more informative compared to conventional
methods. There is no need to apply DFT to problems where
conventional theories are sufficient, as in typical vapor–liquid
or liquid–liquid phase-equilibrium calculations that can be
satisfactorily achieved by using classical equations of state or
local-composition models. However, we cannot expect these
conventional theories to be applicable to interfacial properties
and to phase transitions that occur in a confined geometry or
that concern structure formation as in solubilization of copol-
ymers in a liquid or in supercritical carbon dioxide.273 The
usefulness of many phenomenological theories has been well
established and they remain valuable as long as the underlying
approximations can be adequately justified for a specific prob-
lem.

Future applications of DFT depend on continuing progress
toward more faithful representation of density functionals re-
flecting molecular-level interactions and, more important,
clever implementation methods such as the curvature expan-
sions of local density profiles.274 Further, more efficient nu-
merical algorithms are required to solve multidimensional den-
sity profiles. Although much current work in the literature
concerns relatively simple models with emphasis on the per-
formance of various versions of density functionals for repre-
senting the qualitative or semiquantitative physiochemical
properties in the bulk or under confinement, we anticipate that,
once more realistic intermolecular force fields and reliable
expressions of the excess Helmholtz energy functionals are
established, DFT will be useful for more complex systems, in
particular for those related to material fabrication, environmen-
tal protection, and biomolecular engineering. Important ad-
vances are already emerging in applications of DFT to crystal
nucleation and growth,29 aerosol formation,275 structures of
copolymers and composites,99,260 transport processes through
ion channels,27 protein folding and aggregation in “crowded”
environment,28 polymers for surface protection and antifoul-
ing,201 and self-assembly of lipid bilayers.272,276,277 Future ap-
plications of DFT will be most promising by integrating fun-
damental understandings from theoretical calculations with
engineering practices for development of environmentally
friendly chemical and biological processes and products.

DFT is useful not only for describing equilibrium phenom-
ena as discussed in this review. Extension of DFT to nonequi-

Figure 21. Phase diagram of lipid bilayers predicted by
DFT.272

As shown above, the lipid molecules are represented by
freely joined spherical beads and solvent molecules by Len-
nard–Jones spheres. The tail–solvent and tail–head interac-
tions are purely repulsive, whereas the solvent-head inter-
actions are attractive. xs is the number fraction of solvent
beads, that is, the number of solvent molecules divided by
the total number of solvent and lipid beads. � is the Len-
nard–Jones energy parameter for the pair interaction be-
tween lipid heads or solvent molecules. [Color figure can be
viewed in the online issue, which is available at www.
interscience.wiley.com.]
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librium systems and kinetics/dynamics of microscopic pro-
cesses is now also well advanced. However, similar to classical
thermodynamics, DFT provides only a methodology. Whereas
the mathematical framework is exact, its successful implemen-
tation depends first on realistic molecular models and, more
important, on reliable expressions of the excess Helmholtz
energy functional. For most systems of interest for materials
and biological applications, we have neither truly accurate
molecular models nor exact Helmholtz energy functionals.
Fortunately, chemical engineers have long recognized that, for
practical applications, a theoretical model need not be exact.
For broad chemical engineering applications, we also recog-
nize the value of simple models that contain the essential
physics of natural phenomena, and semiempirical quantitative
models that provide reliable correlation of physiochemical
properties. Toward that end, DFT provides a useful methodol-
ogy.
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